- Take the form: ay''+by'+cy=0
- How to solve:
 - oGuess: $y = e^{rt}$ Substituteo $ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$ e^{rt} is never 0, so cancelo $ar^2 + br + c = 0$ This is the **characteristic equation** for r.o $r = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ Use quadratic formula to solve for r.

• Cases:

- **Overdamped**: two distinct, real roots (i.e. $b^2 4ac > 0$)
 - Let r_1 and r_2 solve the characteristic equation. $r_1 \neq r_2$
 - $\therefore y_1 = e^{r_1 t}$ and $y_2 = e^{r_2 t}$ are solutions to ay'' + by' + cy = 0
 - General solution: $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$ (apply superposition)
- **Critically damped**: one repeated real root (i.e. $b^2 4ac = 0$)
 - General solution: $y = c_1 e^{rt} + c_2 t e^{rt}$
 - This is most easily proved with the Laplace transform
- **Underdamped**: two complex roots (i.e. $b^2 4ac < 0$)
 - Let the roots be $r = a \pm bi$
 - General solution: $y = e^{at}(c_1 \cos bt + c_2 \sin bt)$
 - Theorem: If a complex solution *y* solves a linear homogeneous differential equation, then Re[*y*] and Im[*y*] are also solutions. Proof with substitution and superposition.
 - Proof of general solution:
 - $y = e^{(a \pm bi)t} = e^{at}e^{i(\pm bt)}$
 - $y = e^{at} cis(\pm bt)$. Use Euler's formula.
 - $y_1 = e^{at} \cos(bt)$ and $y_2 = \pm e^{at} \sin(bt)$. Apply theorem.
 - $y = e^{at}(c_1 \cos bt + c_2 \sin bt)$. Apply superposition.
 - Free: b = 0
 - Let the roots be $r = \pm bi$
 - General solution $y = c_1 \cos bt + c_2 \sin bt$
- Applications
 - Unforced mass-spring system with damping mx''+cx'+kx=0

• RLC circuit:
$$Lq''+Rq'+\frac{q}{C}=0$$
; LC circuit: $Lq''+\frac{q}{C}=0$

- Simple harmonic motion.
 - Pendulums (approximated model using the small angle approximation

$$\theta'' + \frac{g}{L}\theta = 0$$
). $\theta'' + \frac{g}{L}\sin\theta = 0$ is the more accurate model.

• Unforced mass-spring system without damping mx''+kx=0